
1/22October 2001

INTRODUCTION
This application note for the ’Radix-4’ implementation of the Fast Fourier Transform algorithm on the
ST120 DSP shows how this algorithm well exploits the high parallelism of the ’ST100’ superscalar
architecture.

AN1381
APPLICATION NOTE

Implementing the Radix-4 FFT Algorithm Using the ST120 DSP

By Marianne DELPHIN

AN1381 - APPLICATION NOTE

2/22

1 FFT PRINCIPLES .. 3

1.1 FAST FOURIER TRANSFORM ... 3

1.2 RADIX-4 FFT ALGORITHM ... 4

2 RADIX-4 FFT IMPLEMENTATION ON ST120 .. 9

2.1 DATA ORGANIZATION .. 9

2.2 AVOIDING DIGIT REVERSING ... 9

2.3 C CODE IMPLEMENTATION ... 10

2.4 ASSEMBLY IMPLEMENTATION ... 16

2.4.1 Packed Arithmetic ... 16
2.4.2 Software Pipelining ... 16
2.4.3 Reload Counters ... 16
2.4.4 Bit Reversing .. 16
2.4.5 Data Management .. 16
2.4.5.1 Data Index Management .. 16
2.4.5.2 Data Register Management .. 17
2.4.6 ASM Code .. 17

3 COMPLEXITY AND PERFORMANCES .. 21

3.1 PERFORMANCES ... 21

3.2 MEMORY USE ... 21

4 REFERENCES ... 22

TABLE OF CONTENTS Page

AN1381 - APPLICATION NOTE

3/22

1 - FFT PRINCIPLES

1.1 - Fast Fourier Transform

The Fourier transform converts signals from the time domain into the frequency domain and vice versa. It
is described by the following equation:

Direct Fourier transform from time to frequency : (1)

Inverse fourier transform from frequency to time: (2)

To compute the Fourier transform using a fixed point DSP, the Discrete Fourier Transform which is the
discrete version of the continuous Fourier transform is used.

It is expressed as: (3)

for a signal which is sampled every T (the sampling period) seconds.

As T is constant and assuming that the signal x(n) consists of N samples N-periodically repeated, we then
have: (4)

that becomes, if the twiddle factor Wn is defined as:

χ f() x t()e j2π ft– td

∞–

∞

∫=

χ t() x f()e j2π f t fd

∞–

∞

∫=

χ f() x nT()e
j2πnTf–

n ∞–=

∞

∑=

χ k() x n()e
j2πk

n
N
----–

n 0=

N 1–

∑=

WN e
j2

π
N
----–

=

χ k() x n()WN
nk

n 0=

N 1–

∑=

(5)

AN1381 - APPLICATION NOTE

4/22

One can notice the symmetry and periodicity properties of the twiddle factors as

1.2 - Radix-4 FFT Algorithm
Direct computation would take N² complex multiplications and N(N-1) complex additions which would
lead to a complexity of O(N²).

To reduce this complexity, a new algorithm derived from the Cooley and Turkey [3] algorithm was created.
This new algorithm, assuming N is a power of 4, divides an N-point Discrete Fourier Transform (DFT) into
four N/4-point DFTs, then into 16 N/16-point DFTs and so on, up to arrive to a 4-point Fourier
Transform.This algorithm is known as the radix-4 Fast Fourier Transform (radix-4 FFT).

The complexity is then reduced to:

This leads to the decomposition of equation (5) into

as

Table 1 : Number of Operations of radix-2 and radix-4 FFTs

N radix-2 additions radix-4 additions radix-2 multiplications radix-4 multiplications

16 152 148 24 20

64 1032 976 264 208

256 5896 5488 1800 1392

1024 30728 28336 10248 7856

WN
k

WN

k
N
2
----+

–=

WN
k

WN
k N+

=

χ k() x n()WN
nk

x n()WN
nk

x n()WN
nk

x n()WN
nk

3
N
4

N 1–

∑+

N
2

3
N
4
---- 1–

∑+

N
4

N
2
---- 1–

∑+

n 0=

N
4
---- 1–

∑=

x n() x n
N
4
----+

 WN

N
4
----k

x n
N
2
----+

 WN

N
2
----k

x n 3
N
4
----+

 WN

3
N
4
----k

+ + + WN
nk

0

N
4
---- 1–

∑=

WN

N
4
----k

j–()k=

WN

N
2
----k

1–()k=

WN

3N
4

--------k
j()k=

AN1381 - APPLICATION NOTE

5/22

It leads to : (6)

To get a 4-point DFT decomposition, let’s decompose again as: (7)

This basic calculation is called a butterfly and is repeated for all the 4 point bundles.The butterfly pattern
is shown graphically in Figure 1.

Figure 1 : 16-Point radix-4 DIF FFT Butterfly

χ k() x n() j–()kx n
N
4
----+

 1–()kx n
N
2
----+

 j()kx n 3
N
4
----+

 + + + WN
nk

n 0=

N
4
---- 1–

∑=

χ k() x n() x n
N
4
----+

 x n
N
2
----+

 x n 3
N
4
----+

 + + + WN
nk

n 0=

N
4
---- 1–

∑=

χ k 1+() x n() jx n
N
4
----+

 – x n
N
2
----+

 – jx n 3
N
4
----+

 + WN
n k 1+()

n 0=

N
4
---- 1–

∑=

χ k 2+() x n() x n
N
4
----+

 – x n
N
2
----+

 x n 3
N
4
----+

 –+ WN
n k 2+()

n 0=

N
4
---- 1–

∑=

χ k 3+() x n() jx n
N
4
----+

 x n
N
2
----+

 – jx n 3
N
4
----+

 –+ WN
n k 3+()

n 0=

N
4
---- 1–

∑=

x(n)

x(n+N/4)

x(n+N/2)

x(n+3N/4)

x(4r) -> leg1of the butterfly

x(4r+1) -> leg2 of the butterfly

x(4r+2) -> leg3 of the butterfly

x(4r+3) -> leg4 of the butterfly

WN
n

WN
2n

WN
3n

AN1381 - APPLICATION NOTE

6/22

The number at the end of each branch of the butterfly corresponds to the twiddle factor exponent(i.e. 6
stands for WN

6).
It appears that the radix-4 algorithm is organized in butterflies, which are organized in groups of butterflies
themselves organized in stages.
In the example of a 16-point radix-4, two stages are available, four groups of one butterfly in the first stage
and one group of four butterflies in the second stage.
Groups vary from N/4 to 1 and butterflies per group vary from 1 to N/4.

Figure 2 : 16-Point radix 4 DIF FFT

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(4)

X(8)

X(12)

X(1)

X(5)

X(9)

X(13)

X(2)

X(6)

X(10)

X(14)

X(3)

X(7)

X(11)

X(15)

Stage 1 Stage 2

0

0

0

0

0

1

2

3

0

2

4

6

0

3

6

9

interval

winspan

AN1381 - APPLICATION NOTE

7/22

Figure 3 : radix-4 DIF FFT ALGORITHM

Data used to perform a butterfly calculation are called b0, b1, b2 and b3 (for example x(0),x(4),x(8) and
x(12) in our previous example). They are separated by a distance called wingspan like bo from b1, b1
from b2 and so on.

START

Initialize

Set up for next stage

Set up for next group

Set up for next butterfly

Compute butterfly

More butterfly?

More groups?

More stages?

NO

NO

NO

Digit- reversed outputs

END

YES

YES

YES

Stage loop

Group loop

Butterfly loop

AN1381 - APPLICATION NOTE

8/22

For the first stage, Winspan = N/4 and is decreasing following the rule: wingspan = winspan>>2.

Data from two consecutive butterflies of the same groups are separated by a distance called interval.For
the first stage interval = N as there is only one butterfly per group and at each stage, interval is decreasing
following the same rule as winspan.

The relationship between wingspan and interval is interval = 4*winspan.

The algorithm can be described with flow chart in figure 3.

The characteristics of a N-point radix 4 FFT are summarized in table 2:

A way of saving some memory to perform the FFT is to do" in place " calculation (.i.e. the input data for a
stage M+1 are the outputs of stage M). That way N*2 memory locations (one for real complex input and
one for imaginary complex input) are saved.

Then, due to the split at each stage of the 4kth, 4k+1th, 4k+2th, 4k+3 th outputs of the previous stage, final
outputs are ordered in a digit-reversed mode.It means that a normal ordered input array will produce a
digit-reversed output array. An example of a digit-reversed array is given in the following table:

Table 2 : Characteristics of a N-Point radix-4

Stage 1 2 3 ... log4(N)

Butterfly pergroup 1 4 16 ... N/4

Butterfly group N/4 N/16 N/64 ... 1

Twiddle leg1

Factor leg2

Exp. leg3

leg4

0

n

2n

3n

n=0 to N/4-1

0

4n

8n

12n

n=0 to N/16-1

0

16n

32n

48n

n=0 to N/64-1

...

...

...

...

0

(N/4)n

(N/2)n

(3N/4)n

n=0

Table 3 : Digit-Reverse Array

NORMAL ORDER DIGIT-REVERSED ORDER

Decimal Binary Quaternary Quaternary Binary Decimal

0 0000 00 00 0000 0

1 0001 01 10 0100 4

2 0010 02 20 1000 8

3 0011 03 30 1100 12

4 0100 10 01 0001 1

5 0101 11 11 0101 5

6 0110 12 21 1001 9

7 0111 13 31 1101 13

8 1000 20 02 0010 2

9 1001 21 12 0110 6

10 1010 22 22 1010 10

11 1011 23 32 1110 14

12 1100 30 03 0011 3

13 1101 31 13 0111 7

14 1110 32 23 1011 11

15 1111 33 33 1111 15

AN1381 - APPLICATION NOTE

9/22

2 - RADIX-4 FFT IMPLEMENTATION ON ST120

This section describes how to implement the radix-4 FFT algorithm on the ST120 and how to achieve a
high performance program with low memory occupation thanks to the ST120 architecture.

2.1 - Data Organization
To take advantage of the ST120 memory architecture (i.e. to be able to perform two data memory
accesses in the same cycle), input data are splitted on two different memory banks.
If NINPUTS is the number of points on which the FFT is performed then r[NINPUTS] is the real part array
(in order) and i[NINPUTS]is the imaginary parts (in order) array.
Real and imaginary parts of the twiddles are in the same array of 2*NINPUTS length, interleaved as real/
imaginary/real/imaginary... and so on.

2.2 - Avoiding Digit Reversing
It can be shown that a radix-4 FFT with in order inputs and in order outputs can be performed using
bit-reversing operations only.
For that, at each stage of the FFT’s calculation, the outputs of each butterfly have to be bit-reversed, i.e.,
if the outputs of a butterfly are numbered 0,1,2 and 3 the outputs 1 and 2 have to be swapped.
For a 16-point FFT Figure 4 illustrates bit reversing operation.

Figure 4 : 16-point FFT bit reversing

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

x(0)

x(8)

x(4)

x(12)

x(2)

x(10)

x(6)

x(14)

x(1)

x(9)

x(5)

x(13)

x(3)

x(11)

x(7)

x(15)

b0-0

b0-1

b0-2

b0-3

b1-0

b1-1

b1-2

b1-3

b2-0

b2-1

b2-2

b2-3

b3-0

b3-1

b3-2

b3-3

Bit reversing on
each butterfly

b0-0

b1-0

b2-0

b3-0

b0-1

b1-1

b2-1

b3-1

b0-2

b1-2

b2-2

b3-2

b0-3

b1-3

b2-3

b3-3

b0-0

b1-0

b2-0

b3-0

b0-2

b1-2

b2-2

b3-2

b0-1

b1-1

b2-1

b3-1

b0-3

b1-3

b2-3

b3-3

Stage 1

b0-0

b0-2

b0-1

b0-3

b1-0

b1-2

b1-1

b1-3

b2-0

b2-2

b2-1

b2-3

b3-0

b3-2

b3-1

b3-3

Bit reversing on
each butterfly

Stage 2

AN1381 - APPLICATION NOTE

10/22

After the last stage data are then in bit-reversed order.
A bit-reversing operation on the whole array is then needed to have in order outputs. As the ST120 has a
bit-reverse addressing mode, this can be done very efficiently in the last stage of the calculation.

2.3 - C Code Implementation
The following fixed point C code takes into consideration the features of the ST120 architecture to have a
similar structure to the optimized assembly code.
As data and twiddles are 16 bits variables they have been declared in "short " type.

void r4_full(short r[], short i[], short n, short w[])
{

int stage, group, butterfly;
int Stages, Groups, BpG;
int WingSpan;
int Wi, WStep;
int Ri, Ii;
short c0_1,s0_1, c0_2, s0_2, c0_3, s0_3;
short c1_1,s1_1, c1_2, s1_2, c1_3, s1_3;
short g0_0r, g0_0i, g0_1r, g0_1i, g0_2r, g0_2i, g0_3r, g0_3i;
short g1_0r, g1_0i, g1_1r, g1_1i, g1_2r, g1_2i, g1_3r, g1_3i;
short t0_0r, t0_0i, t0_1r, t0_1i, t0_2r, t0_2i, t0_3r, t0_3i;
short t1_0r, t1_0i, t1_1r, t1_1i, t1_2r, t1_2i, t1_3r, t1_3i;
short tt0_0r, tt0_0i, tt0_1r, tt0_1i, tt0_2r, tt0_2i, tt0_3r, tt0_3i;
short tt1_0r, tt1_0i, tt1_1r, tt1_1i, tt1_2r, tt1_2i, tt1_3r, tt1_3i;
Stages = 4;

AN1381 - APPLICATION NOTE

11/22

Calculation for a butterfly gives:

(*) for(butterfly=0; butterfly < BpG; butterfly++) {

g0_0i = i[Ii]; // Img(A0)
g1_0i = i[Ii+1]; // Img(A1)
g0_0r = r[Ri]; // Real(A0)
g1_0r = r[Ri+1]; // Real(A1)

g0_1i = i[Ii+WingSpan]; // Img(B0)
g1_1i = i[Ii+WingSpan+1]; // Img(B1)
g0_1r = r[Ri+WingSpan]; // Real(B0)
g1_1r = r[Ri+WingSpan+1]; // Real(B1)

g0_2i = i[Ii+2*WingSpan]; // Img(C0)
g1_2i = i[Ii+2*WingSpan+1]; // Img(C1)
g0_2r = r[Ri+2*WingSpan]; // Real(C0)
g1_2r = r[Ri+2*WingSpan+1]; // Real(C1)

g0_3i = i[Ii+3*WingSpan]; // Img(D0)
g1_3i = i[Ii+3*WingSpan+1]; // Img(D1)
g0_3r = r[Ri+3*WingSpan]; // Real(D0)
g1_3r = r[Ri+3*WingSpan+1]; // Real(D1)

t0_0i = (short)(g0_0i + g0_2i); // Img(A0 + C0)
t1_0i = (short)(g1_0i + g1_2i); // Img(A1 + C1)
t0_0r = (short)(g0_0r + g0_2r); // Real(A0 + C0)
t1_0r = (short)(g1_0r + g1_2r); // Real(A1 + C1)

t0_1i = (short)(g0_0i - g0_2i); // Img(A0 - C0)
t1_1i = (short)(g1_0i - g1_2i); // Img(A1 - C1)
t0_1r = (short)(g0_0r - g0_2r); // Real(A0 - C0)
t1_1r = (short)(g1_0r - g1_2r); // Real(A1 - C1)

 t0_2i = (short)(g0_1i + g0_3i); // Img(B0 + D0)
t1_2i = (short)(g1_1i + g1_3i); // Img(B1 + D1)
t0_2r = (short)(g0_1r + g0_3r); // Real(B0 + D0)
t1_2r = (short)(g1_1r + g1_3r); // Real(B1 + D1)

t0_3i = (short)(g0_1i - g0_3i); // Img(B0 - D0)
t1_3i = (short)(g1_1i - g1_3i); // Img(B1 - D1)
t0_3r = (short)(g0_1r - g0_3r); // Real(B0 - D0)
t1_3r = (short)(g1_1r - g1_3r); // Real(B1 - D1)

tt0_0r = (short)(t0_0r + t0_2r); tt0_1r = (short)(t0_1r + t0_3i);
tt0_0i = (short)(t0_0i + t0_2i); tt0_1i = (short)(t0_1i - t0_3r);
tt1_0r = (short)(t1_0r + t1_2r); tt1_1r = (short)(t1_1r + t1_3i);
tt1_0i = (short)(t1_0i + t1_2i); tt1_1i = (short)(t1_1i - t1_3r);

tt0_2r = (short)(t0_0r - t0_2r); tt0_3r = (short)(t0_1r - t0_3i);
tt0_2i = (short)(t0_0i - t0_2i); tt0_3i = (short)(t0_1i + t0_3r);
tt1_2r = (short)(t1_0r - t1_2r); tt1_3r = (short)(t1_1r - t1_3i);
tt1_2i = (short)(t1_0i - t1_2i); tt1_3i = (short)(t1_1i + t1_3r);

AN1381 - APPLICATION NOTE

12/22

Calculation for a butterfly gives (continued)

The first optimization is to use the packed arithmetic feature of the ST120.
As the data for two consecutive butterflies in the same groups are consecutive in the data array, two half
word data can be loaded at the same time in a word and two butterflies can be calculated at the same
time with packed arithmetic. Therefore, the number of iteration of the group loop can be divided by 2.
Some other simplifications in the C code can be derived from the structure of the radix-4 algorithm.
First we can see from table-2 (Characteristics of an N-point FFT), that the different stages have different
numbers of iteration for the group and butterfly loops.

// 3 Complex Multiplies per butterfly
// do a bitrev on the outputs.
i[Ii] = tt0_0i; // Img(A0)
i[Ii+1] = tt1_0i; // Img(A1)
r[Ri] = tt0_0r; // Real(A0)
r[Ri+1] = tt1_0r; // Real(A1)
Ri += WingSpan; Ii += WingSpan;
i[Ii] = (short)((c0_2*tt0_2i + s0_2*tt0_2r)>>15); // Img(B0)
i[Ii+1] = (short)((c1_2*tt1_2i + s1_2*tt1_2r)>>15); // Img(B1)
r[Ri] = (short)((c0_2*tt0_2r - s0_2*tt0_2i)>>15); // Real(B0)
r[Ri+1] = (short)((c1_2*tt1_2r - s1_2*tt1_2i)>>15); // Real(B1)
Ri += WingSpan; Ii += WingSpan;
i[Ii] = (short)((c0_1*tt0_1i + s0_1*tt0_1r)>>15); // Img(C0)
i[Ii+1] = (short)((c1_1*tt1_1i + s1_1*tt1_1r)>>15); // Img(C1)
r[Ri] = (short)((c0_1*tt0_1r - s0_1*tt0_1i)>>15); // Real(C0)
r[Ri+1] = (short)((c1_1*tt1_1r - s1_1*tt1_1i)>>15); // Real(C1)
Ri += WingSpan; Ii += WingSpan;
i[Ii] = (short)((c0_3*tt0_3i + s0_3*tt0_3r)>>15); // Img(D0)
i[Ii+1] = (short)((c1_3*tt1_3i + s1_3*tt1_3r)>>15); // Img(D1)
r[Ri] = (short)((c0_3*tt0_3r - s0_3*tt0_3i)>>15); // Real(D0)
r[Ri+1] = (short)((c1_3*tt1_3r - s1_3*tt1_3i)>>15); // Real(D1)
Ri += WingSpan; Ii += WingSpan;

}

AN1381 - APPLICATION NOTE

13/22

For the first stage, there is only one butterfly loop per group loop iteration so that it can be skipped.Then
there is only one inner loop (the group’s one).

Groups = n;
BpG = 1; // ButterflysPerGroup
Wi = 0;

Groups = Groups >> 2;
WingSpan = Groups;
Ri = 0; Ii = 0;

for(group=0; group < (Groups>>1); group++) {
c0_1 = w[2*Wi];
s0_1 = w[2*Wi+1];
c1_1 = w[2*(Wi+1)];
s1_1 = w[2*(Wi+1)+1];

c0_2 = w[2*2*Wi]; // loading the
s0_2 = w[2*2*Wi+1]; // the twiddles
c1_2 = w[2*2*(Wi+1)];
s1_2 = w[2*2*(Wi+1)+1];

c0_3 = w[3*2*Wi];
s0_3 = w[3*2*Wi+1];
c1_3 = w[3*2*(Wi+1)];
s1_3 = w[3*2*(Wi+1)+1];
Wi + = 2;

 BUTTERFLY CALCULTATION (*)

 } //for(group). 1st stage loop

AN1381 - APPLICATION NOTE

14/22

For the last stage, two simplifications can be performed.
First, as for the first stage, one inner loop can be skipped as there is only one iteration per group loop for
the whole stage.
Secondly, if we look at the twiddle values for this stage, we can see that it is always (1,-1) so the
multiplication by the twiddles are in fact only additions and subtractions.

Ri = 0; Ii = 0;
BpG = BpG >> 1;
for(butterfly=0; butterfly < BpG; butterfly++) {

g0_0i = i[Ii]; // Img(A0)
g0_1i = i[Ii+1]; // Img(B0)
g0_0r = r[Ri]; // Real(A0)
g0_1r = r[Ri+1]; // Real(B0)

g0_2i = i[Ii+2]; // Img(C0)
g0_3i = i[Ii+3]; // Img(D0)
g0_2r = r[Ri+2]; // Real(C0)
g0_3r = r[Ri+3]; // Real(D0)

g1_0i = i[Ii+4]; // Img(A1)
g1_1i = i[Ii+4+1]; // Img(B1)
g1_0r = r[Ri+4]; // Real(A1)
g1_1r = r[Ri+4+1]; // Real(B1)

g1_2i = i[Ii+4+2]; // Img(C1)
g1_3i = i[Ii+4+3]; // Img(D1)
g1_2r = r[Ri+4+2]; // Real(C1)
g1_3r = r[Ri+4+3]; // Real(D1)

t0_0i = (short)(g0_0i + g0_2i); // Img(A0 + C0)
t1_0i = (short)(g1_0i + g1_2i); // Img(A1 + C1)
t0_0r = (short)(g0_0r + g0_2r); // Real(A0 + C0)
t1_0r = (short)(g1_0r + g1_2r); // Real(A1 + C1)

t0_1i = (short)(g0_0i - g0_2i); // Img(A0 - C0)
t1_1i = (short)(g1_0i - g1_2i); // Img(A1 - C1)
t0_1r = (short)(g0_0r - g0_2r); // Real(A0 - C0)
t1_1r = (short)(g1_0r - g1_2r); // Real(A1 - C1)

AN1381 - APPLICATION NOTE

15/22

t0_2i = (short)(g0_1i + g0_3i); // Img(B0 + D0)
t1_2i = (short)(g1_1i + g1_3i); // Img(B1 + D1)
t0_2r = (short)(g0_1r + g0_3r); // Real(B0 + D0)
t1_2r = (short)(g1_1r + g1_3r); // Real(B1 + D1)

t0_3i = (short)(g0_1i - g0_3i); // Img(B0 - D0)
t1_3i = (short)(g1_1i - g1_3i); // Img(B1 - D1)
t0_3r = (short)(g0_1r - g0_3r); // Real(B0 - D0)
t1_3r = (short)(g1_1r - g1_3r); // Real(B1 - D1)

tt0_0r = (short)(t0_0r + t0_2r); tt0_1r = (short)(t0_1r + t0_3i);
tt0_0i = (short)(t0_0i + t0_2i); tt0_1i = (short)(t0_1i - t0_3r);
tt1_0r = (short)(t1_0r + t1_2r); tt1_1r = (short)(t1_1r + t1_3i);
tt1_0i = (short)(t1_0i + t1_2i); tt1_1i = (short)(t1_1i - t1_3r);

tt0_2r = (short)(t0_0r - t0_2r); tt0_3r = (short)(t0_1r - t0_3i);
tt0_2i = (short)(t0_0i - t0_2i); tt0_3i = (short)(t0_1i + t0_3r);
tt1_2r = (short)(t1_0r - t1_2r); tt1_3r = (short)(t1_1r - t1_3i);
tt1_2i = (short)(t1_0i - t1_2i); tt1_3i = (short)(t1_1i + t1_3r);

// do a bitrev on the outputs.
i[Ii] = tt0_0i; // Img(A0)
i[Ii+1] = tt0_2i; // Img(B0)
r[Ri] = tt0_0r; // Real(A0)
r[Ri+1] = tt0_2r; // Real(B0)
Ii +=2; Ri+=2;
i[Ii] = tt0_1i; // Img(C0)
i[Ii+1] = tt0_3i; // Img(D0)
r[Ri] = tt0_1r; // Real(C0)
r[Ri+1] = tt0_3r; // Real(D0)
Ii +=2; Ri+=2;
i[Ii] = tt1_0i; // Img(A1)
i[Ii+1] = tt1_2i; // Img(B1)
r[Ri] = tt1_0r; // Real(A1)
r[Ri+1] = tt1_2r; // Real(B1)
Ii +=2; Ri+=2;
i[Ii] = tt1_1i; // Img(C1)
i[Ii+1] = tt1_3i; // Img(D1)
r[Ri] = tt1_1r; // Real(C1)
r[Ri+1] = tt1_3r; // Real(D1)
Ii +=2; Ri+=2;

}

AN1381 - APPLICATION NOTE

16/22

2.4 - Assembly Implementation
The C implementation already contains some optimizations to exploit the ST120 architecture, like
separating the different stages of the calculation and processing two butterflies at the same time.

2.4.1 - Packed Arithmetic
This last optimization was done to be able to use the packed arithmetic feature of the ST120.
The ST120 can perform 2 Data Unit (DU) and 2 Address Unit (AU) operations on 32-bit words in the same
cycle.
With packed arithmetic, it can do up to 4 DU operations and 4 AU operations on 16-bit half-words in the
same cycle if data are consecutive in memory.
As previously described, data of 2 butterflies belonging to consecutive groups are consecutive in memory
and can be then loaded, added or subtracted in the same packed instruction.
Radix-4 butterfly takes 22 real additions and 12 real multiplications. Two butterflies calculations represent
(22+12)*2 = 68 DU operations and thanks to the Multiply Accumulate(MAC) and Multiply Subtract
(MSUB) operations and to packed arithmetic they can be performed in 20 cycles [2].
Similarly all the load operations are done in 32-bit format and since the MAC’s result is a 32-bit data
(16 msb needed only) store operations are done in 16-bit format.

2.4.2 - Software Pipelining
Software pipelining is a code optimization technique where instruction level parallelism is exploited by
overlapping the execution of successive iterations from an inner loop. It means that a prologue of the loop
code is executed before the start of the loop and an epilog of the loop code is executed after the end of
the loop.This allows to improve the combination of AU and DU instructions and to reduce the number of
iteration by 1.
No pure software pipelining is performed in the assembly code. Two packed loads are performed before
the start of the loop to allow earlier start of the calculation in the first "sliw" group [1] of the asm code.
Those two packed loads are then performed again near the end of the most inner loop (sliw group 15).

2.4.3 - Reload Counters
Reload counters allow to reload a loop counter value without any waiting penalty (zero overhead) when
two loops are overlapped.
In our case, it is used in the intermediate stages to reload the butterfly and group loop counter value. It is
also used in the first stage to precalculate the stage loop counter value for intermediate stages and in all
the intermediate stages to precalculate the stage loop counter value for the last stage

2.4.4 - Bit Reversing
Assembly version differs from the C in the fact that in assembly, the bit-reverse operation is done at the
same time as the last stage calculation, thanks to the bit-reverse addressing mode of the ST120.
Until the last stage, calculations are done" in place "i.e. data are loaded and stored in the same array. In
the last stage, data are stored in order in another array just after they are calculated

2.4.5 - Data Management

2.4.5.1 - Data Index Management
Instructions in the loop group are performed to calculate the data pointer address used in the butterfly
loop and to reload twiddles values.
Thanks to auto increment pointer of the ST120, the calculation of the data pointer address can be
simplified.
For the radix-4 FFT the following relationship is always true:
4*wingspan*butterflies-per-group = NINPUTS.
The butterfly loop is performed butterflies-per-group times and the interval between two consecutive
butterflies is 4*wingspan. Therefore, to calculate the next group data pointer address, only the subtraction of
a constant is needed. If two groups are calculated at the same time, the subtraction of NINPUTS-2 is needed.
NxtDataIndex = LastDataIndex - (NINPUTS-1(or2))

AN1381 - APPLICATION NOTE

17/22

2.4.5.2 - Data Register Management
Data register use is quite intensive in the ’sliw’ groups of the butterflies calculation. As two butterflies are
calculated at the same time, it multiplies by two the number of operands and thus the number of data
registers needed.
An efficient way to save some registers is to put operand and destination data in the same register.Writing
after each ’sliw’ group which registers are used and which registers are free allows the programer to
optimize the use of all the available data registers.

2.4.6 - ASM Code
Asm code example for two butterflies calculation is:

ldp R0, @(P0 !+ P2) // R0H = Real(A1), R0L = Real(A0)
ldp R2, @(P6 !+ P2) // R2H = Imag(A1), R2L = Imag(A0)
nop
nop
// Rused = 2; Used: R0,R2 ; Avail: R1,R3-R15

_fft_group_loop_st:

_fft_bfly_loop_st:

// add network 1st level
ldp R4, @(P0 + P2) // R4H = Real(C1), R4L = Real(C0)
ldp R6, @(P6 + P2) // R6H = Imag(C1), R6L = Imag(C0)
addcp R0, R0, R4 // t1_0r=R(A1+C1), t0_0r=R(A0+C0)
subcp R4, R0, R4 // t1_1r=R(A1-C1), t0_1r=R(A0-C0)
// Rused = 4; Used: R0,R2,R4,R6 ; Avail: R1,R3,R5,R7-R15

// add network 1st level
ldp R1, @(P0 !+ P10) // R1H = Real(B1), R1L = Real(B0)
ldp R3, @(P6 !+ P10) // R3H = Imag(B1), R3L = Imag(B0)
addcp R2, R2, R6 // t1_0i=I(A1+C1), t0_0i=I(A0+C0)
subcp R6, R2, R6 // t1_1i=I(A1-C1), t0_1i=I(A0-C0)
// Rused = 6; Used: R0,R1,R2,R3,R4,R6 ; Avail: R5,R7-R15

// add network 1st level
ldp R5, @(P0 !- P10) // R5H = Real(D1), R5L = Real(D0)
ldp R7, @(P6 !- P10) // R7H = Imag(D1), R7L = Imag(D0)
addcp R1, R1, R5 // t1_2r=R(B1+D1), t0_2r=R(B0+D0)
subcp R5, R1, R5 // t1_3r=R(B1-D1), t0_3r=R(B0-D0)
// Rused = 8; Used: R0-R7 ; Avail: R8-R15

// add network 2nd level
ldw R8, @(P1 - P4) // W0_1=R8 H,L: s0_1, c0_1
addcp R0, R0, R1 // tt1_0r=(t1_0r+t1_2r),tt0_0r=(t0_0r+t0_2r)
subcp R1, R0, R1 // tt1_2r=(t1_0r-t1_2r),tt0_2r=(t0_0r-t0_2r)
sdp @(P0 - P2), R0 // tt0_0r, tt1_0r
// Rused = 8; Used: R1-R8 ; Avail: R0,R9-R15

AN1381 - APPLICATION NOTE

18/22

Asm code (continued)

// add network 1st level
ldw R10, @(P1 + P4) // W0_3=R10 H,L: s0_3, c0_3
addcp R3, R3, R7 // t1_2i=I(B1+D1), t0_2i=I(B0+D0)
subcp R7, R3, R7 // t1_3i=I(B1-D1), t0_3i=I(B0-D0)
addba P4, P4, P3
// Rused = 8; Used: R1,R3-R8,R10 ; Avail: R0,R2,R9, R11-R15

// add network 2nd level
ldw R9, @(P1 !+ P5) // W0_2=R9 H,L: s0_2, c0_2
addcp R2, R2, R3 // tt1_0i=(t1_0i+t1_2i),tt0_0i=(t0_0i+t0_2i)
subcp R3, R2, R3 // tt1_2i=(t1_0i-t1_2i),tt0_2i=(t0_0i-t0_2i)
sdp @(P6 - P2), R2 // tt0_0i, tt1_0i
// Rused = 9; Used: R1,R3-R10 ; Avail: R0,R2,R11-R15

// add network 2nd level
nop
ldw R11, @(P1 - P4) // W1_1=R11 H,L: s1_1, c1_1
addcp R4, R4, R7 // tt1_1r=(t1_1r+t1_3i),tt0_1r=(t0_1r+t0_3i)
subcp R7, R4, R7 // tt1_3r=(t1_1r-t1_3i),tt0_3r=(t0_1r-t0_3i)
// Rused = 10; Used: R1,R3-R11 ; Avail: R0,R2,R12-R15

// add network 2nd level
ldw R13, @(P1 + P4) // W1_3=R13 H,L: s1_3, c1_3
addcp R5, R6, R5 // tt1_3i=(t1_1i+t1_3r),tt0_3i=(t0_1i+t0_3r)
subcp R6, R6, R5 // tt1_1i=(t1_1i-t1_3r),tt0_1i=(t0_1i-t0_3r)
subba P4, P4, P3
// Rused = 11; Used: R1,R3-R11,R13 ; Avail: R0,R2,R12,R14-R15

// Multiplies
// group 1, index 1
ldw R12, @(P1 !- P5) // W1_2=R12 H,L: s1_2, c1_2
nop

 mpfchl R0, R1, R12 // Res1_2r = tt1_2r * c1_2
mpfhh R2, R1, R12 // Res1_2i = tt1_2r * s1_2
// Rused = 14; Used: R0-R13 ; Avail: R14-R15

AN1381 - APPLICATION NOTE

19/22

Asm code (continued)

msfchh R0, R0, R3, R12 // Res1_2r = Res1_2r - tt1_2i * s1_2
mafchl R2, R2, R3, R12 // Res1_2i = Res1_2i + tt1_2i * c1_2
sdf @(P0 + 2), R0 // Res1_2r ,Store to index 1 for bitrev
sdf @(P6 + 2), R2 // Res1_2i
// Rused = 11; Used: R1,R3-R11,R13 ; Avail: R0,R2,R12,R14-R15

// group 0, index 1
nop
nop
mpfcll R0, R1, R9 // Res0_2r = tt0_2r * c0_2
mpflh R2, R1, R9 // Res0_2i = tt0_2r * s0_2
// Rused = 13; Used: R0-R11,R13 ; Avail: R12,R14-R15

msfclh R0, R0, R3, R9 // Res0_2r = Res0_2r - tt0_2i * s0_2
mafcll R2, R2, R3, R9 // Res0_2i = Res0_2i + tt0_2i * c0_2
sdf @(P0 !+ P2), R0 // Res0_2r, Store to index 1 for bitrev
sdf @(P6 !+ P2), R2 // Res0_2i
// Rused = 8; Used: R4-R8,R10-R11,R13 ; Avail: R0-R3,R9,R12,R14-R15

// group 1, index 2
nop
nop
mpfchl R9, R4, R11 // Res1_1r = tt1_1r * c1_1
mpfhh R12, R4, R11 // Res1_1i = tt1_1r * s1_1

msfchh R9, R9, R6, R11 // Res1_1r = Res1_1r - tt1_1i * s1_1
mafchl R12, R12, R6, R11 // Res1_1i = Res1_1i + tt1_1i * c1_1
sdf @(P0 + 2), R9 // Res1_1r, Store to index 2 for bitrev
sdf @(P6 + 2), R12 // Res1_1i

// group 0, index 2
// Load Ar, Ai for next 2 groups
ldp R0, @(P0 + P10) // R0H = Real(A1), R0L = Real(A0)
ldp R2, @(P6 + P10) // R2H = Imag(A1), R2L = Imag(A0)
mpfcll R9, R4, R8 // Res0_1r = tt0_1r * c0_1
mpflh R12, R4, R8 // Res0_1i = tt0_1r * s0_1

AN1381 - APPLICATION NOTE

20/22

Asm code (continued)

msfclh R9, R9, R6, R8 // Res0_1r = Res0_1r - tt0_1i * s0_1
mafcll R12, R12, R6, R8 // Res0_1i = Res0_1i + tt0_1i * c0_1
sdf @(P0 !+ P2), R9 // Res0_1r , Store to index 2 for bitrev
sdf @(P6 !+ P2), R12 // Res0_1i

// group 1, index 3
nop
nop
mpfchl R9, R7, R13 // Res1_3r = tt1_3r * c1_3
mpfhh R12, R7, R13 // Res1_3i = tt1_3r * s1_3

msfchh R9, R9, R5, R13 // Res1_3r = Res1_3r - tt1_3i * s1_3
mafchl R12, R12, R5, R13 // Res1_3i = Res1_3i + tt1_3i * c1_3
sdf @(P0 + 2), R9 // Res1_3r
sdf @(P6 + 2), R12 // Res1_3i

// group 0, index 3
nop
nop
mpfcll R9, R7, R10 // Res0_3r = tt0_3r * c0_3
mpflh R12, R7, R10 // Res0_3i = tt0_3r * s0_3

msfclh R9, R9, R5, R10 // Res0_3r = Res0_3r - tt0_3i * s0_3
mafcll R12, R12, R5, R10 // Res0_3i = Res0_3i + tt0_3i * c0_3
sdf @(P0 !+ P10), R9 // Res0_3r
sdf @(P6 !+ P10), R12 // Res0_3i

_fft_bfly_loop_en:

ldp R0, @(P0 - P14) // R0H = Real(A1), R0L = Real(A0)
ldp R2, @(P6 - P14) // R2H = Imag(A1), R2L = Imag(A0)
nop
nop
// Rused = 2; Used: R0,R2 ; Avail: R1,R3-R15

 nop
nop
subha P0, P0, P8
subha P6, P6, P8

nop
nop
addha P4, P4, P3
addwa P1, P1, P7

_fft_group_loop_en:

nop
nop
shra2 P2, P2 // WingSpan=Groups
GP32md

AN1381 - APPLICATION NOTE

21/22

3 - COMPLEXITY AND PERFORMANCES

3.1 - Performances

To evaluate the theoretical performances of a NINPUTS points FFT, first the complexity of each separate
loop has to be evaluated and then the complexity of each different stage (first, intermediate, last).

– Stage loop instruction (for intermediate stages): each instruction in this loop is performed [log4(NIN-
PUTS)-2] times.

– Group loop instructions: each instruction in this loop is performed (NINPUTS/4-4)/3 times.

– Butterfly loop instructions: each instruction in this loop is performed [(log4(NINPUTS)-2)*NINPUTS/4]
times.

The complexity of each different stage of our assembly code is calculated as follows:

– The complexity of the first stage:
20 cycles*1/2 * N/4 groups + constant

– The complexity of the last stage:
7 cycles * N/4 butterflies + constant

– The complexity of the intermediate stages:
20 cycles * 1/2 * [(log4(NINPUTS)-2)*NINPUTS/4] (butterfly loop instructions)
+ 3 cycles * (NINPUTS/4-4)/6 (group loop instructions)
+ 9 cycles * (log4(NINPUTS)-2) (stage loop instructions)
+ constant

The complexity of the whole algorithm is the sum of the complexity of each stage:

cycles count = 20*1/2*NINPUTS/4 + 3*(NINPUTS/4-4)/6 + 20*1/2 * [(log4(NINPUTS)-2)*NINPUTS/4] +
9*(log4(NINPUTS)-2) + 7*NINPUTS/4 + cst

That is to say

Cycle count for radix-4

The average number of 32-bit instructions performed at each cycle by the ST120 is 3.51.

A ST120 EVA development ship has been used for measurement.

3.2 - Memory Use

The code size for the radix-4 function is of 1132 bytes.

For data memory, it has been explained before that to allow access decoupling on ST120, input data had
to be separated on two different memory banks. Each of them occupies NINPUTS half-words so for 256
points input data take 2*256*2 = 1 Kbyte of memory.

Twiddles array is composed of 2*NINPUTS half-words so it also occupies 1 Kbyte of memory.

FFT calculation can be done "in place"(i.e. data is written at the same memory place where it has been
read). After the last stage, data have to be bit-reversed to be in natural order. 2*NINPUTS additional
memory locations will be required to store data in natural order.

Table 4 shows the overall memory requirement.

256 complex points radix-4 FFT 2416 + (constant=35) = 2451 cycles

1024 complex points radix-4 FFT 12185 + constant

Table 4 : Overall Memory requirement

Program memory RAM ROM

1132 Bytes 2048 Bytes 1024 Bytes

Cycle Count =35*NINPUTS/8+(5*NINPUTS/2+9)*(log4(NINPUTS)-2)-2

AN1381 - APPLICATION NOTE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

22/22

4 - REFERENCES

[1] ST120 DSP-MCU Core Reference Guide available on www.st.com/st100/.
[2] ST120 DSP-MCU Instruction Set Reference Guide available on www.st.com/st100/.
[3] J.W. Cooley and J.W. Turkey "An algorithm for the machine calculation of complex Fourier series",

Math.Comp., vol 19 April 1965 pp 297-301.

